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CONTRACT TITLE: Electroporation: Theory of Basic Mechanisms

INTRODUCTION

The objective of our investigation is the development of a theory of the mechanism of clectroporation.
Overall we seek to find models which allow theoretical description of measurable quantities. This
includes the more specific objective of first providing a quantitative description of key features of
electrical behavior, and subsequently of molecular transport.

In summary form, electroporation (i) is now believed to be a universal cell membrane phenomenon,
involving both the lipid bilayer and membrane macromolecules, and is therefore fundamental to mem-
brane understanding, (ii) provides a general method for introducing molecules into cells, or releasing
molecules from cells, with potentially major applications in science and technology, and yet (iii) its
mechanism is poorly understood. 1-3 For example, no previous theory actually d 'sbes electrical
behavior during electroporaion, membrane recovery, or the amount ofm0.ecfar transport.

APPROACH TO A THEORETICAL MODEL U - \ "
oc--

With this in mind, our specific goals have been: .'

(1) Extension of an initial theory of reversible electrical breakdown to one with more solid founda-
tions, i.e. elimination of the approximate "switch on" criteria of pores, and elimination of the
assumption of the membrane containing so many pores that the membrane was "saturated" with
pores. 4 A significant advance towards this goal has been made, and is presented in a recently
submitted paper (copy appended).

(2) Achievement of a theory which quantitatively describes the transmembrane potential, U(t), during
irreversible rupture, such that a unified theory of both REB and rupture is provided by one
model. Such a theory should yield predictions of U(t) which can be compared directly with
experiments, a basic requirement of which has not yet been achieved by other theories of electro-
poration. This has recently been accomplished, and is presented in the appended manuscript.

(3) Related achievement of the ability to quantitatively describe incomplete REB, i.e. a discharge that
stops before the transmembrane potential reaches zero. This has also been achieved (see
appended manuscript).

89 7 13 039
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(4) Extension of our first, successful theory of the reversible electrical breakdown of electroporation
to include metastable pores associated with a "foot-in-the-door" mechanism, i.e. a molecule/pore
interaction wherein the presence of a macromolecule partially inserted within a pore prevents the
pore from shrinking and then vanishing. This approach, based on the approximation of one-
dimensional diffusion through the long lifetime pore, is a candidate mechanism for molecular
transport associated with electroporation.

(5) Further extension to include a pore-membrane macromolecule interaction in the theory. Mem-
brane channel proteins are prime candidates for such interactions, and may provide nucleation
sites for the long lifetime pores which are believed to occur. Such metastable pores may have
significantly longer lifetimes than "ordinary" transient aqueous pores, and may exhibit a strong
temperature dependence of the lifetime. This candidate mechanism may also be relevant to
describing molecular transport.

(6) As partially noted above, carry out further work towards the development of an extended theory
which predicts both electrical behavior and the amount of transmembrane transport of molecules.
Here the involvement of membrane proteins, particularly channel forming proteins, is believed to
be important. Such a theory should include hindered diffusion as a primary mechanism, particu-
larly for long times involving persistent metastable pores. However electrokintic mechanisms
such as electrophoresis and electroosmosis which may also operate during the time the transmem-
brane potential is non-zero. The general goal is to predict the number of molecules which move
across a cell membrane, and also (because of the fundamentally statistical nature of the theory,
and the statistical orientation of non-spherical cells) the distribution of transport within a cell
population.

5

Throughout we have sought quantitative estimates which can be compared to the results of experiments
by ourselves and others.

SUMMARY

We have completed our initial extension of a transient aqueous pore theory of electroporation. This
improved model yields descriptions of four key aspects of complex electrical behavior.

" Reversible electrical breakdown (REB) leading to complete membrane discharge
" Incomplete REB (discharge halts at U > 0)
" Rupture (mechanical) with its characteristic slow, sigmoidal electrical discharge
" Membrane charging without dramatic behavior at small U

The extended theory quantitatively describes this complex set of behavior. This improved version
eliminates the use of sharp conduction criteria for pores, and instead uses a more realistic continuous
conduction in which an estimate of the Born energy is used with a Boltzmann factor to describe the
reduced conductivity of a pore in a low (compared to water) dielectric constant membrane. This ver-
sion also eliminates the use of an assumption concerning the number of pores present in a membrane
at equilibrium, and instead utilizes creation and destruction rates for pores. This version further
assumes a realistic minimum pore size, based on molecular sizes. Finally, this version provides the
first unified and quantitative description of the several dramatic electroporation-related phenomena
listed above.
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We are now continuing to make progress towards combining the improved version (which describes
the very early electrical events) with a model for pore-membrane protein interactions (expected to be
relevant to the long-lived high permeability state). Although still fraught with difficulties, we antici-
pate that this approach will lead to a reasonable description of cell membrane electroporation, wherein
first dramatic electrical events occur, followed by two phases of membrane recovery (fast, complete
resealing of most pores, and slow, metastable pore-protein complexes which recover, probably through
a thermally activated process). Finally, we expect that mass transport through both the fast recovering
pores and slowly recovering pores will be significant, with a combination of hindered diffusion and
electrokintic transport being significant for the fast recoverying pores, and primarily hindered diffusion
being important through the slowly recovering pore-protein complexes. Throughout, we will continue
to emphasize theoretical development which can lead to the prediction of experimental results, thereby
allowing direct comparisons.

COPY OF SUBMITTED MANUSCRIPT

Because of the complexity and length (47 pages) of the calculations, text and computed graphs which
show how one can quantitatively describe the electrical behavior associated with electroporation in an
artificial planar bilayer membrane, we have not attempted to summarize the calculation and its results,
as this could be misleading. Instead we have provided a complete copy of the manuscript:

Barnett, A. and J. C. Weaver "Electroporation: A Unified, Quantitative Theory of Reversible
Electrical Breakdown and Rupture" (submitted).

Figures 5 through 12 provide illustrations of the behavior of the model, and demonstrate that much of
the complex behavior observed in experiments is actually described by the model.
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ABSTRACT

We present a quantitative theory of electroporation of artificial lipid bilayer membranes. Assum-

ing that aqueous pores cause electroporation, we describe the pore population of the membrane by the

density function n (r, t), where n (r, t) dt is the number of pores with radius between r and r + dr at

time t. To write a set of differential equations for the evolution of n (r, t), we assume that there is a

minimum pore size rm,, that pores of radius rmm. are created and destroyed by thermal fluctuations,

and that the pore creation rate is proportional to exp(- L), where U is the membrane voltage, we

derive a relation between pore size and pore conductance, we use the expression for the pore energy

previously derived by Pastushenko and Chizmadzhev, and we include a model of the external circuit.

equation numerically. We solve the equations numerically and compare the solutions to the results of

charge pulse experiments.

In a charge-pulse experiment a membrane suffers one of four possible fates: (1) a slight increase

in electrical conductance, (2) mechanical rupture, (3) partial reversible electrical breakdown, resulting

in incomplete discharge of the membrane, or (4) reversible electrical breakdown (REB), resulting in

complete discharge of the membrane. In agreement with experiment, our theory describes these four

fates and predicts that the fate in any particular experiment is determined by the properties of the mem-

brane and the duration and amplitude of the charging pulse.

INTRODUCTION AND BACKGROUND

Electroporadon is a set of related phenomena, caused by the formation of aqueous pores, that are

observed in both natural and artificial bilayer membranes in response to a large applied electric field.

In planar artificial membranes these phenomena include reversible electrical breakdown (REB) and

membrane rupturel , while in cells REB is followed by a transient high permeability state. 2*5 Much of

the recent interest in electroporation relates not to electrical behavior, but rather to the significant fluxes

of molecules across cell membranes that occur during the high permeability state. 6 Most applications of

.. . . .A -i , , iI I I
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clectroporation have involved the introduction of genetic material into cells, but the large transient

molecular fluxes have much wider applications. Although such molecular transport itself has some-

times been termed "electroporation" 7, the transient molecular flux is only one consequence of electri-

cally generated large pores; we therefore use the term "electroporation" to refer to all pore phenomena

associated with a large transmembrane potential difference.

Although the topology of cells differs from that of planar membranes, many features of REB in

planar membranes and in cell membranes are the same. The planar geometry, which permits easy

access to both sides of the membrane, and the simplicity of bilayer membranes that lack proteins com-

bine to make artificial membranes a good model system. The insight gained from the study of artificial

membranes will be a good foundation on which to build a theory of electroporadon in biological mem-

branes. The remainder of this paper deals exclusively with artificial bilayer membranes.

First we discuss two types of experiments used for studying elcctroporaion of artificial planar

bilayer membranes, then we describe phenomena observed in the experiments, and finally we derive

and discuss a theory that can explain man) observations by providing a complete description of the

observable electrical behavior of artificial bilaver membranes, including the trans-membrane potential

U (r) and the membrane conductance G (t).

ELECTROPORATION EXPERIMENTS: VOLTAGE CLAMP AND CHARGE PULSE

There are two major types of electroporation experiments: voltage clamp and charge pulse. Both

types of experiment use apparatus similar to that shown in Figure 1. The apparatus consists of a

vessel filled with an electrolytic solution.1-8 - 12 A planar lipid bilayer membrane spans the vessel, divid-

ing it into two compartments. In each compartment is a planar electrode oriented parallel to the mcm-

brane. Whcn the electrodes are at different potentials, the electric field is perpendicular to the mem-

brane . An external circuit applies a signal to the electrodes and measures the response of the system.

,knril .lQ9C)
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An equivalent circuit for a voltage clamp experiment is shown in Figure 2 and for a charge pulse

experiment is shown in Figure 3. We model the membrane as a capacitor C in parallel with a resistor

G.(t. The membrane is in series with the resistor RE which represents the electrolyte and the elec-

trodes (we neglect the capacitance of the electrodes, which is small). The external circuit consists of a

voltage source with internal resistance RT in series with an ammeter for a voltage clamp experiment

and of a current source with internal resistance RN in parallel with a voltmeter for a charge pulse

experiment.

In a voltage clamp experiment, a voltage waveform Ui(t). typically a series of step functions, is

applied to the electrodes and the current In, the sum of the charging current to the "membrane capaci-

tor" and the leakage current through the "membrane resistor"is measured. The quantity of interest is

the membrane conductance G (t). When the applied voltage is not changing G (t) is related to Uj (t)

and to the measured current ,, (t) by the equation

Ui (t) - in (RE+RT),(I

Im + (RE + RT) C d dt

Typically,. the amplitude of the applied voltage is of the order of 0.2 v - 0.7 v, and the duration of the

pulse is of the order of milliseconds or longer.8

In a charge pulse experiment a current waveform li(t), typically a square wave, is applied to the

electrodes and at the end of the pulse the switch is opened. 1 After the pulse, the membrane conduc-

tance G () is related to the measured voltage Ur by the equation

G() = -C dIn U.) (2)dt

Since a membrane undergoing REB can discharge in less than a microsecond, the time scale of

charge pulse experiments is much shorter than the time scale of voltage clamp experiments. Although

the theory we develop is applicable to the behavior of membranes on all time scales of interest, in this

paper we confine ourselves to the discussion of charge pulse experiments and short time scales.

Nnnff 5. 1QSQ
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MEMBRANE FATES IN CHARGE PULSE EXPERIMENTS

Benz et all have observed that a membrane in a charge pulse (pulse length - 0.4iis) experiment

suffers one of four possible fates:

(1) Slight increase in conductivity

(2) Irreversible rupture

(3) Incomplete reversible electrical breakdown, or

(4) Reversible electrical breakdown.

In case 4, the membrane conductance increases by up to eight orders of magnitude, causing the mem-

brane to discharge completely in less than I lis. The membrane then recovers slowly to its original

state. In case 3, the membrane conductance increases by several orders of magnitude; the membrane

then begins to discharge with a characteristic time of about I ps, but the membrane recovers before the

membrane discharges completely. In case 2, the membrane conductance increases sharply after a dclay

of many microseconds and never recovcrs its original properties following discharge. In case 1. the

membrane conductance increases slightly during the pulse and slowly returns to its original value. The

fate of the membrane in any given experiment is determined by the properties of the membrane and the

duration and magnitude of the applied pulse. A successful clectroporation theory must predict the out-

come of any given experiment and explain the differences between the four fates in terms of a reason-

able physical model.

In the present theory we hypothesize that a membrane contains a population of aqueous conduct-

ing pores that are created and destroyed by thermal fluctuations. Our "standard membrane" in equili-

brium at room temperature and with membrane voltage U = 0 contains about seven pores. We will

show that our thcor , gives the following explanation for the four fates:

If a small amplitude pulse is applied to the membrane experiment, the mcmbrane charges with a

characteristic RC time constant. The membrane resistance does not increase significanly, as the pore

9. 5 0QQ
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creation rate will not change much from its value for U = 0. If the pulse amplitude and duration are

large enough to cause rupture, the electric field across the membrane increases the pore creation rate

and causes the resulting pores to increase in size. The membrane conductance increases, but not

enough to cause the membrane to discharge rapidly. Evcntually, one or more pores become largc

enough to become unstable. As the large pore grows. the membrane conductance increases and the

membrane discharges, but the unstable pore continues to grow until the membrane ruptures. If the

pulse amplitude and duration are large enough to cause REB, the enhancement of the membrane con-

ductance is sufficient to discharge the membrane before any pores become unstable; the pores then

shrink in size and their number decreases, and the membrane returns to its initial state undamaged.

For partial REB, the discharge is incomplete, the membrane conductance increases sufficiently rapidly

that the membrane remains charged to .1 v or so.

MATHEMATICAL FORMULATION

We now present a derivation of our theorT, which is an extension and improvement of previous

work. 13 ! 5 Consider a membrane in an electroporation experiment, such as shown in Figure 1. Let

n(r, t)dr be number of pores in the membrane with radius between r and r + dr at time t. The den-

sity function n(r, ) obeys Smoluchowski's equation16

= Dp T (3)

where Dr.the diffusion constant for the pore radius, is independent of r 17, k is Boltzmann's constant,

T is the absolute temperature, and AE is the pore "energy". a function of r and U wi'h dimensions of

energy that has the property that -(- )v is the effective force acting to increase the pore size.

Equation (3) is valid for rmia : r Srma x. We discuss the question of the appropriate values of rmrn

and r,,,. in the section on bounda.y conditions.

-41 C I ll(a
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Equation (3) can be derived from the assumption that j, the flux density of pores in radius space,

is given by

j =-o, MEk' (4)

The first term in the right member of Equation (4) is the "diffusion flux density" due to random

changes in the size of the pores due to thermal fluctuations. The second term is the "drift flux density"

due to the action of the radial force acting to change the pore size. If pores are neither created nor des-

troyed (except at the "boundaries" rmim and rm.). j obeys the continuity equation

d._n + a = 0 (5)
di dr

Use of Equation (4) to eliminate j in Equation (3) yields Equation (i).

To use Equation (3) to describe a membrane we must specify the functional dependence of AE

on U and r, apply appropriate initial and boundary conditions, and write an additional equation which

relates U(t) to n(rat). First we discuss the function AE.

THE PORE "ENERGY0 AE

The dynamics of the pore population is controlled by the physical forces that act to change pore

radius. These forces are of two types: (I) forces due to thermal fluctuations that change rapidly and

randomly in time, and (II) forces that are functions of the local electric field and the mechanical

configuration of the pore. A complete formulation of the problem would require knowledge of the

stress in the membrane for an) given configuration. For a given membrane and pore shape. one would

solve Maxwell's equations for the electric field, and use the Maxwell stress tersor to compute the

forces of electrical origin. Tne equilibrium shapc of the membrane and pore could then be calculated

by balanzing the mechanical and clcctrical surcsses. One would then have to repeat the calculation.

A N-i 5. 1ROQ
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taking into account thermal fluctuations of the pressure in the bathing solution, the stress in the mem-

brane, and the electric field. This approach is prohibitively difficult. To make the problem tractable,

we follow Abidor ct aI I8 and assume that each pore is cylindrical, and is therefore completely

described by one parameter, its radius.

We write AE as the sum of the mechanical contribution AEM, the electrical contribution AEE,

and an arbitrary constant AE o.

AE = AEM + AEE + AEO (6)

A simple and physically reasonable form for AEM is19 20

AEM = 2nyr - Fr2  (7)

where I is the surface tension of the membranc-watcr interface, and y' is the edge energy of the pore.

To compute the electrizal contribution to the force, we must solve the electrostatics problem.

This is a difficult task, and no adequate formulation of the problem has yet appeared in the literature.

The primary d-fficulty involves computing the relation between the current density and the electric field

in the aqueous phase near the membrane and inside the pores. We follow Pastushcnko and Chizmad-

zhev 21 and assume that the system can be described by Ohm's law, and that the electrical conductivity

a is constant in each of three different regions;

at in the bulk electrolyte
a= ar inside a pore (8)

0 inside the lipid

The conductivity a, is related to the concerntrations C, and mobilities rj, of the ions in solution by the

formula

at i,
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where e -1.6 x 1-19 coulomb, zi is the charge of the i -th type of ion, and the sum is over all of the

different types of ions in the solution. The conductivity inside the pore is given by

c;, = F (zie)'IICiHjexp I kT I (10)

where H4 . the steric hindrance factor, is a function of the pore radius and of the radius ri of ion of

t)pe i, and so is the standard chemical potential of an ion of type i inside the pore. We use the poly-

nomial approximation for Hi given by Rcnkin .2

H(r) I - L [I -]2]t-1 F.+ 2.09[ ]0.95[..]](I

We approximate the standard chemical potential an ion in the pore by the Born energy of a point

chargc on the axis of an infinite cylinder21

t ei ) P (12)
4;m1 r I I

where cl and ., are the dielectric constants of the lipid and the water, respectively, and the function P

has a maximum value of 0.25. 2

To find an approximate solution to the electrostatics problem, we start with the assumptions that

the pores are sufficiently far apart that their mutual interaction is negligible, and that the electric field

Ep inside a pore is uniform and perpendicular to the plane of the membrane. The electrical force act-

ing to enlarge the pore can be expressed in terms of E,,. The electric pressure difference APie, at the

pore edge is

- ,,E~ ,, (13)
2 2

where the first term is the electrical pressure in the pore and the second is the electrical pressurc in the

.!,*I . !0NO
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adjacent lipid. The electrical contribution to the pore "energy" AEE is -I times the work done to

expand the pore from rmin to r;

AEE = JAPeIec (21crhdr') = -th(E,-el) f E 2 r'dr' (14)
rmiu

where we have used Equation (13). To use Equation (14), one needs to find an expression for Ep in

terms of U. Since the mcmbranc surface is not an equipotential when conducting pores are present,

we define U to be the potential difference across the membrane far from a pore. The voltage U can

be written as the sum of two terms

U = U + U, (15)

where U,, is the voltage drop across the pore itself and U, is the voltage drop in the bulk clectrolyic

near the ends of the pore. The electric field E. is related to Up by

Up
Ep = " (16)

h

where h is the thickness of the membrane. The voltage drops U,, and U, are related to Ip, the current

through the pore, by

Up = Rp J (17)

and

U, =Ro,, (18)
where the pore resistance R,, and the spreading resistance R, 24 are

h (19)

R= (20)
2a, r

Because R. and Rp azi as a voltage divider, the equation relating E,, to U is

EP = U Rp C1)
h R, + R;,

A,7"il . 10RO
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Using Equation (21), we can now rewrite Equation (14) as

r

= - C2 r dr (22)

where

(r) I + I (23)[ 2h cy,J
a result first obtained by Pastushenko and Chizmadzhcv. 21 Note that for small values of r, a = 1,

while for large r both a and the electrical force tend to 0 as --.

It is convenient to define the constant AEo such that

AE(rmin) 0 (24)

The function AE(r,U) is completely defined by Equations (6) - (12) and (19) - (24). Figure 4 is a

plot of AE versus r for various values of U. The values of the parameters y, r, el, E,,, h. rMi, and ri

used in the computation for Figure 4 are given in Table 1.

BOUNDARY AND LNITIAL CONDITIONS

Since Equation (3) is a parabolic panial differential equation, appropriate boundary conditions

consist of two equations of the form

g [ )_L (25)

one valid at r = rmi, and the other valid at r = rm for all times, and an initial condition spccify-

ing n (r) for all r within rmn < r < rrnaA at = 0. The boundary condition

A=r1 5. 1Q B
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j = 0 (26)

with j defined by Equation (4), corresponds to the case of a perfectly reflecting "wall" in r space,

while the condition

n = 0 (27)

corresponds to a perfectly absorbing wall. We assume that no pores can exist for r < rmin, where rmin

is a parameter of the model. Packing constrainL require rmmi to be somewhat larger than the size of

the hydrophilic headgroups (= 0.7 nrm) that make up the surface of the pore, since the pore wall must

consist of at least several phospholipid molecules 25. For our calculations we use rmm. = 1.0 rin.

The problem of pore creation and destruction is unsolved. Theories based on treatment of insta-

bilities in planar membranes can identify conditions for instability onset26"28, but do not show that

such an instability actually results in pore structures. The formation of depressions or dimples29 and

membrane breathing modes30 , which might precede pore structure formation, has been considered.

None of this work is sufficiently advanced to permit one to compute pore birth or death rates. We are

therefore forced to make ad hoc assumptions regarding the birth and death rate. We assume that the

number of pores changes due to the creation and destruction of pores of radius r,,, with the conse-

quence that the boundary condition at r - rmin is

j = N X atr = ri (28)

where X' and N4 are the creation and destruction rates of pores of radius rmm.

To form a pore, which can be thought of as an excitation of the membrane, the membrane must

go through configurations which are energetically unfavorable. We characterize this transition by intro-

ducing a potential barrier A. We expect that this potential barrier will be a function of U. Because

the clectrical energy is proportional to U- (for r = re. V = U.) we further assume that
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A = 8,-a U 2  (29)

where 8C and a are constants. Introducing an Arhenius factor, we write

Nk = v exp- c aU2 (30)

where the attempt rate v is a constant with dimensions of inverse time. This expression is valid as

long as the fraction of the membrane area occupied by pores is small. Assuming that the probability

that a pore of radius rmin is destroyed is independent of U,. we write

Nd = X n (rmin) exp _ (31)

where X is a constant with dimensions of velocity. Using Equations (4), (29), (30) and (31), the boun-

dary condition at r = rmin becomes

r = f(r i.) exp _L v exp (32)[ r kT ar I C~~P~. JT IVx j J(2

We now consider the boundary condition at r = rm, and the related issue of large pores. In the

follow paragraphs we argue that the large pores, whose unlimited growth causes membrane rupture,

form a distinct sub-population that must be treated separately form the small pores, and we derive an

equation to describe them. The limiting size separating the large pores from the small pores is rm,

and the boundary condition that we apply at rmax joins together the two sub-populations.

We begin by defining r, (U) to be the largest value of r for which _ = 0. For r > rc, AE

is a monotonically decreasing function of r. This means that a large pore is unstable, and can grow

until the membrane ruptures. For r sufficiently large, the "drift flux" term in Equation (4) is much

larger than the "diffusion flux" term, and the probability that such a large pore will decrease in size is

. A a il1Z. 10RO
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very small.

For the description of the small pores, it is therefore appropriate to use any value of r., that is

sufficiently large, and to apply the "absorbing wall" condition (Equation (27)) there. In the numerical

simulations, we set r,.,. = 2 r, (0). The presence of a pore of radius 2rc (0) ( = 2xl0-6 cm) does not

mean that the membrane has already ruptured, as such a pore is still very much smaller than the mem-

brane (= .1 cm); rather, it implies that the membrane is very likely to rupture soon, since the probabil-

ity of such a pore shrinking again is very small. Until the membrane does rupture, the contribution

from the large pore or pores will dominate the membrane conductance G, and therefore determine the

time evolution of U.

Because our model is statistical in nature and a single large pore can dominate G, we must con-

sider the effect of fluctuations in the number of large pores. We have defined n (r) dr to be the

number of pores with radius between r and r + dr. To be more exact, n (r) dr is the average over an

ensemble of a large number of identical membranes of the number of pores with radius between r and

r + dr; the actual number in any particular membrane will in general differ from n (r) dr. If the

number of pores is large and the conductance of each pore is small, the pore populations of different

members of the ensemble are similar and all members are well described by the ensemble average. On

the other hand, if the number of pores is small and the conductance of each pore is large, the pore

populations of different members of the ensemble are quite different, and no member of the ensemble

is well described by the ensemble average.

When one or more large pores dominate G, the growth of the large pores determines the time

dependence of G. For this reason it is important to consider the time evolution of the radius of a large

pore. We start by observing that Smoluchowski's equation (Equation (3)) is a limiting case of the

solution of the problem of a biased random walk 31. Consider a particle of mass m that obeys the gen-

eralized Langevin equation

A.-il €. 19€0
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d2r" kT dr' dAEm = -_ _ -+ g(t) (33)
dt2  D dt dr'

where g (t) is a random function that varies rapidly in time. Proper statistical treatment of Equation

(33) leads to the Fokker-Planck equation. Our system corresponds to a "particle" with no inertia, so

that statistical treatment leads to the Smoluchowski equation (3). In the limit where m tends to zero

I ,I I I
and 1dAEdr :a Ig(t)1 , Equation (33) becomes

dr- DP dAE (34)
d kT dr'

Thus we see that "velocity" of the "particle" is determined by the balance between the drag and the

driving force.

In the interest of clarity, we also give an alternative derivation of Equation (34). In general, r',

the expectation value of the radius of a pore in a membrane described by the density function n, is

defined by

= r n(rt) drr' = I -- (35)

where N. is the number of pores in the membrane, i.e.

NP = f n(r.t) dr (36)

We seek an equation for the evolution of r' with time. Consider a membrane with a single pore of

radius r I (> r, (0)) at t = 0. The initial value of the density function is

n = 8(r - r) (37)

where S(r) is the Dirac delta function. Note that A*, = I at t = 0. We assume that, throughout its

evolution, both n (t) and are zero at the limits of the range of r. To derive the desird equation,

. ~~~4 loco II
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we take moments of Equation (3). We start by integrating Equation (3) over the entire range of r.

The left member of the resulting equation is 21, the time derivative of the number of pores. When
dr

we integrate by parts, we see that the right member is zero. The resulting equation is easily

integrated, yielding

= 1 (38)

Next we multiply Equation (3) by r and integrate over r. The left member of Equation (3) is now just

the time derivative of the expectation value of r. Integrating the right member by parts, the firstdt

term vanishes and the second term becomes

D Ir -L - LA]dr = -- n - . dr (39)
kT ar DrJ kT fJ a

Since it is the diffusion term that causes n (rt) to spread, and the diffusion term is small compared to

the drift term for r : Rc(o), we expect n to remain sharply peaked during its subsequent evolution. In

this case. the term 2 can be removed from the integral with the understanding that it is to be
ar

evaluated at r = r'. The remaining integral is equal to unity, and the resulting equation is clearly

equivalent to Equation (34).

We now solve Equation (34). Substitution of Equation (6) for AE into Equation (34) and use of

Equations (7) - (24) yields an equation that depends upon U, and therefore is coupled to the equation

that describes the electrical circuit. But for sufficiently large pores AEE, which contains the U-

dependence, is small compared to AEM (compare Equation (7) to Equations (22) and (23)), and can be

neglected. The resulting equation is independent of U and can be solved analytically. Setting AE

equal to AEM and using Equation (7) transforms Equation (34) into

d.' = - 2 (- rr') (40)
dt kT

Anril 5. 10K
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Equation (40) is separable, and its solution is

r' r, (0) + (r - r, (0)) exp(-) (41)
Td

where the characteristic time Td is

'Cd U,--- - (42)

and r, is the initial value of r'.

Note that Equation (41), which describes the evolution of large pores, is deterministic. To com-

bine the statistical description of the small pores with the deterministic description of large pores, we

need a criterion for the time of formation of large pores. The probability that a pore becomes large

during the interval between t and t + dt is j(rmx,t)dt, where j is defined by Equation (4). Since

n = 0 at r = r.a x , only the first term in Equation (4) contributes. Since large pores cannot be des-

troyed (unless the membrane ruptures) and the probability of an additional large pore forming does not

depend upon how many large pores already exist, the formation of large pores is a Poisson process.

The probability P (N1 , t) that N, large pores exist at time t is given by the Poisson distribution

P(NI,t) = eP LL (43)
NJ!

where the parameter pt is

[ tr.~ ') di' = I a r, i d) (44)-D r Jr ,

The probability that the membrane has no large pores at time : is simply

P (0, t) = exp(- g) (45)
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The dominant influence of a small numbers of large pores on the rupture process has an impor-

tant consequence; thermodynamic fluctuations cause the lifetime of a membrane undergoing rupture to

vary from experiment to experiment, even if the experimental setups are identical. This is due to the

fact that the creation of the large pore that causes rupture is a random process. The straightforward

way to compute r:, the creation time of the i-th large pore, is to use a random number generator. For

the purposes of this paper. it is more convenient to use a completely deterministic model. We therefore

require t to equal that value of t for which g equals i; that is, the first large pore is created at t 1,

when g = 1, the second at t2 , when g = 2, etc, where ;. is defined by Equation (44). This is a reason-

able scheme, since the Poisson distribution P(N. t) (Equation (43)) has the property that g is the

expectation value of NI, the number of large pores.

Once a large pore forms, its radius as a function of time is given by Equation (41). We therefore

define the density function n* as

n' = n + (r - r'(t - ti)) (46)

where n obeys Equation (3) for rmi < r < rm. and equals zero for r > rm x, and ti is the creation

time of the i-th large pore.

This division of n into two pieces has one drawback; if the conductance of a single pore of

radius rma is a sizable fraction of the conductance of the membrane, there will be a noticeable discon-

tinuity in G (r) at : = ri. The only way to avoid this discontinuity and still correctly model the effect of

the unstable large pores (a pore with radius sufficiently large will always dominate G) is to reformu-

late the problem and perform a Monte Carlo calculation, which requires much more computing power.

Anil 5. 1RQS
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For the initial condition, we assume that at t = 0 the membrane is in equilibrium with U = 0.

The quasi-steady state solution to Equation (3) can be found analytically; it is

. 8d - 8, - 2n)(r - rmin) + irF(r2 - rmin2)fx kT rmin : r < r,(0)

n(r) = (47)
0r > r, (0)

TBE EXTERNAL CIRCUIT

To close the system of equations, one needs an additional equation to describe the time evolution

of U. The membrane is adequately modcled as a capacitor C in parallel with a resistor with conduc-

tance G (t). The value of C can be computed with the familiar formula from elementary electrostatics

4r,t A,,
C = (48)h

where A, is the area of the membrane. The capacitance of the partition that holds the membrane is

much smaller than the capacitance of the membrane itself and can be neglected. G (t) can be expressed

in terms of an integral over the pore population. The current Ip flowing through a pore of radius r in

a membrane with voltage U across it is

U (49)
I) = R,(r)+Rp(r)

where R, (r) and R, (r) are defined in Equations (19) and (20), respectively. The current I flowing

through the entire membrane is simply the sum of the current flowing through each pore and can be

expressed as an integral over n (r, t)

= U f n[ (r.t) dr (50)= U R, (r ) + R (7) 50

I

The membrane conductance G - is therefore

4nU1 . 1C~Q
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( I I
G(t) Rs(r)+Rp(r) dr (51)

rum

Figure 3 is a schematic diagram of the entire circuit. A square wave pulse of amplitude I, is

applied to the electrodes for 0 < t < tzd,, and at t = tpb, the switch is opened. Thus, charge is

supplied to the membrane from an external source, but discharge after the switch opens at the end of

the pulse can occur only through the membrane. Such a circuit is described by the differential equa-

tions

R J Rv U (G(t) + f
CdU RE + RN RE + RN if( 5 2pse

dt U if I >

and the initial condition

U(0) = 0 (53)

NUMERICAL SOLUTIONS OF THE EQUATIONS

In the present model, the membrane is characterised by eleven parameters (h, cl, A, y, r, D, v,

X. 8,. 8,. and rmi,). Unfortunately, it is difficult to obtain better than an order of magnitude estimate

for eight of them from measurements of membrane properties other than electroporation. In principle,

one could determine their values by obtaining a "best fit" to experimental data. Because the number of

data points one can obtain (the membrane potential U (i) for many values of t for different pulse

lcngths, applied potentials, solutes, temperatures, etc.) greatly exceeds eight. the system is multiply

ovcr dctcrmined. Therefore, unless the systcm is mathematically ill-conditioned, a fitting procedure

could be us-d to determine the values of the parameters. Due to the large amount of computing time

required for such a fitting proceedurc. we do not fit data. Instead, we show that, for one plausible sC:
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of values of the parameters (the "standard membrane"), the present model describes both REB and rup-

ture. In future work we will explore the behavior of the solutions as the parameters are varied.

We solve the Equation (3) using the Crank-Nicholson method. In addition to the eleven parame-

ters that describe the membrane, one must describe the remainder of the experimental apparatus by

specifying the temperature T, the electrical conductivity of the solution a, the radii rj and charge zj of

each species of small ion, the shunt resistance RN, the resistance RE of the electrodes and the solution.

and the strength of the current source as a function of time. We use a square wave of amplitude 1i

and duration tpo,, for the applied current. We specify the grid size Ar = (rm.. - rmin)/m and the

time step size At = Ar' dt/Dp by quoting the values of the parameters m (the number of intervals

between grid points) and dt (the time step size in units of the diffusion time based on the grid spac-

ing). The values of all of the parameters used in the numerical calculations are given in Table 1.

RESULTS

Figures 5 - 12 show the results of our numerical calculations. We simulated five charge pulse

experiments, which differed only in the amount of injected charge Q = tpd,,l o. The pulse length tw,,

was 0.4gs for all five simulations, the amount of injected charge Q was 5 nanocoulombs, 10 nano-

coulombs, 15 nanocoulombs, 20 nanocoulombs. and 25 nanocoulombs. and the membrane parameters

are given in Table 1. Figures 5 and 6 show U(:), Figures 7 and 8 show N(:), and Figures 9 and 10

show G (:) for all five simulations. The curves in Figures 5 - 10 are labeled by values of the injected

charge. There are two time scales of interest: a short time scale (approx I .us ) characteristic of mem-

brane charging and REB. and a long time scale (=80 ts) characteristic of membrane recovery or rup-

ture. Figures 5. 7 and 9 show short time scale behavior, while Figures 6. 8, and 10 show long time

scalc bchavior.

We denote by UC, the value of the membrane potential at the end of the applied pulse I: = 0.4.s4.

Viewed as a function of Q, U0 increases for small values of Q. reaches a maximium value, and then

Ar,"41 C 'IcRO
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decreases again. We denote by Uo., the maximum value of Uo. and by Q, the maximum value of Q.

For these simulation, Q, = 20 nanocoulombs and Uo,, = 0.94 v. If the injected charge is greater than

QC, REB occurs before the end of the pulse, and the membrane conductivity increases so much that

the mcmbrane starts to discharge before the pulse ends (see Figs. 5, 7, and 9). A membrane undergo-

ing REB discharges completely in less than I I s. Following discharge the membrane recovers in

about 80 Is. The recovery can best be seen in Figures 8 and 10. The number of pores increases in

less than I ts, which looks like a step function in the long time scale plot (Fig. 8), and then decays

cxponcntially back to its equilibrium value. The mcmbrane conductance also increases in about I s.,

but it decays in two stages, as can be seen in Figure 10. The first stage, during which the decay is

rapid, is caused by the shrinking of the the pores- the second stage. during which the dccay is much

slower, is caused by the decrease in the number of pores. The membrane returns to its initial state in

about 80 As. The evolution of G and N during REB are best understood by considering the evolution

of n (r) shown in Figure 11. Figure II shows n (r) at different times betwccn 0 and 60 As for Q = 20

nanocoulombs; the curves in Figure 11 are labeled with the time since the begining of the pulse.

Driven by the strong electrical forces, n increases rapidly for all r until REB occurs. As the mem-

brane begins to discharge. the pore creation rate drops, but the force - -AE still acts to increase the
ar

size of existing pores until r = 0.5 - 0.6 As, by which time the membrane has discharged sufficientlv

that the electrical force no longer dominates the mechanical force, which favors contraction. The pores

shrink faster than they, are destroyed, causing a decrease in the average pore size. During this time, N

decreases slowly while G decreases rapidly due to the rapid shrinking of the pores. Eventually n

rcaxes to a q:.asi-static equilibrium: its shape no longer changes, but its magnitude decreases due to

destruction of pores radius rmm. During this final phase, G decrease slowly, its variation entirely due

to the chan.ce in ,'. as the membranc asymptotically approaches its original state.

For injected charge less than Q,, REB does not occur during the pulse. and the membrane rcains

its charge for a much longer time. In this case. the number of pores and the membrane conductance

. r%?-I"a 1C. 10 l Q
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continue to grow even after the end of the pulse. Thcre even exists a range of Q for which the mem-

brane does not undergo REB until after the end of the pulse. For Q = 15 nanocoulombs, the mem-

brane discharges rapidly for t between 0.8 lis and 4 p.s, at which time U = 0.05 v and the mcmbrane

conductance only slightly exceeds the conductance of an unexcited membrane (= 4.5 x I09). The

membranc evcn.tually discharges complcely with an RC time constant of about 2 s.

For Q sufficiently small, no breakdown occurs. For Q = 5 nanocoulombs, the membrane rapidly

charges up to U = 0.25 v. At t = 80 Its, the membrane pore population is approaching a quasi-steady

state, and the conductance has increased by a factor of about 10. The membrane then starts to

discharge with a time constant of about 0.1 s. As the membrane discharges, G decreases and the rate

of discharge slows until it approaches the unexcited membrane RC time constant of about 2 s.

Intermediate values of Q lead to the far more interesting case of mechanical rupture. For Q =

10 nanocoulombs, the membrane charges up to U = 0.5 v. It remains almost constant for about 5 pis,

during which time the membrane conductance has increased sufficiently to cause the membrane to

discharge. As the membrane discharges, G reaches a maximum and begins to decrease at about r =

15 pts. Until t = 30 pts the evolution resembles the case Q = 15 nanocoulombs, slowed down by a

factor of about 5. The resemblance ceases at t = 31 pts at which time G starts to increase again due to

the effect of an unstable pore. (The discontinuities in the curve in Figure 10 are artifacts of the tech-

rique used to keep track of the large pores; in a real membrane G (t) is continuous.) As G increases

the membrane discharges more and more rapidly, until it is completely discharged by t = 72 pts. The

unstable pore continues to grow until the membrane ruptures. The time constant for the exponential

growth of the unstable pore is given by Equation (42). For the present example,. = 13 pgs. The

evolution of n leading to mechanical rupture is shown in Figure 12.

DISCUSSION
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We have presented a quantitative theory of electroporation of lipid bilayer membranes. The

theory successfully describes the four different fates of membranes in charge pulse experiments. We

have not fit any data, but rather we have performcd numerical "experiments" with a "standard mcm-

brane". While our results qualitatively agree with the experimcntal work of Benz et al l , comparison of

our results with theirs shows the following differences:

(1) The membrane voltage at the cnd of the pulse U ( for our "standard membrane" is a much

stronger function of the injected charge than is observed experimentally.

(2) The time delay before membrane rupture for our "standard membrane" is shorter by a factor of

about 5 than is observed cxperimentally.

We do not know how much the agreement with experiment can be improvcd by changing the values of

the parameters; we plan to explore this question in the future.

If the data cannot be fit better by changing the valucs of the parameters, there are several areas in

which the model can be improved. Improved approximations for AE and better modeling of pore crea-

tion and destruction might improve agreement with experiment. In addition, the current-voltage rela-

tion of a pore is probably not linear12. 32. and this might effect the results.

Another topic for future work is modeling voltage clamp experiments, which deal with smaller

trans-membrane voltages and longer time scales. Unfortunately, simulation of a voltage clamp experi-

ment with our present computer program takes a prohibitively long time; we would need to reduce the

running time by a factor of 1000.

In sutmma-y, we believe that the present theory correctly describes the overall features of electro-

poration. but further work is required to obtain detailed quantitative agreement with experiment.

A. . .' . 1iCJ



Page 25

Table I
A,. membrane area 1.45 mm 2

C capacitance of membrane 9.61 nF

D diffusion constant 5 x 10
- 10 cm2/s

dt time step size (in units of D I(Ar )2) 0.5

h membrane thickness 2.8 nm
kT temperature 4 x 10- 14 ergs
RE series resistance of clcctrolyte. electrodes, and wires 30 Q
RN internal resistance of current source 500
r... large pore creation size 40 nm

ri n  minimum pore radius I nm
r, radius of positive ions 0.2 nm

r- radius of negative ions 0.2 nm

r ., source current pulse length 0.4 pS

Z. charge of positive ions (in units of proton charge) +1
Z_- , charge of negative ions (in units of proton charge) -1
y pore edge energy density 2 .tergs/cm

F membrane surface tension 1 erg/cm2

8, pore creation energy barrier 2.04 10- 12 ergs

8d pore destruction energy barrier 2.04 10-12 ergs
Ar grid spacing .0195 nm
Et dielectric constant of lipid 2.1 co
___ dielectric constant of water 80 E-

v pore creation rate prefactor 102 s- 1

___ conductivity of bulk solution .098 r-' cm-I
x pore destruction rate prefactor 101, cm/s
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List of Symbols (see also Table 1)
a coefficient of U2 in A
Ci concentration of i.th ion species
e proton charge
E electric field
Ep electric field inside a pore
G, G (t) membrane conductance
Hi(r) steric hindrance factor for ion of radius ri in pore of radius r
Ii  applied current

measured current
IP current through a pore
j flux density of pores in radius space
n (r, t) probability density function of pores (small pores only)
n (r, t) probability density function of pores (including large pores)
1 (t)p number of pores in the membrane as a function of time
lye pore creation rate
Nd pore destruction rate

P (-S) Parsegian's function for Born energy

r pore radius
ri  radius of ion of type I
RP pore resistance
R, spreading resistance (includes both sides of the membrane)
t time since start of pulse
U. U (t) transmembranc potential
Ui applied voltage
Un, measured voltage
Uo transmembrane potential at the end of a square pulse
Uox maximum transmembrane potential at the end of a square pulse
UP voltage drop across a conducting pore
U, voltage drop in electrolyte near the ends of a conducting pore (both ends)
AE(r, U.) pore "energy"
APetec difference in electrical pressure at the pore edge
Ili electrical mobility of the i-th ionic species
A potential barrier for pore formation
A.i  standard chemical potential of an ion of species i inside a pore
a electrical conductivity
oYv  conductivity of electrolyte within a pore

time constant for growth of an unstable pore
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FIGURE CAPTIONS

FIGURE 1. The experimental apparatus consists of a vessel filled with an clectrolytic solution.

The vessel is separated into two compartments by a partition. On each side of the partition is a planar

electrode connected to a power supply and a measuring circuit. The membrane spans an aperture in

the partition.

FIGURE 2. An equivalent circuit for a voltage clamp experiment using the apparatus shown in

Figure 1. The voltage source U, (t) in series with the resistor RT models the power supply, the resistor

1
RE models the electrolyte, electrodes and wires, and the capacitor C in parallel with the resistor -

G(t)

model the membrane. The ammeter measures the current I,. (t) flowing through the electrodes.

FIGURE 3. An equivalent circuit for a charge pulse experiment using the apparatus shown in Fig-

ure 1. The current source li() in parallel with the resistor RA models the power supply, the resistor

RE models the electrolyte, electrodes and wires, and the capacitor C in parallel with the resistor 1
G(t)

model the membrane. The switch is opened at the end of the current pulse. The voltmeter measures

the potential difference U,,, (t) between the electrodes.

FIGURE 4. Pore "energy" vs. radius for a membrane described by the parameters listed in Table I.

Each curve is labeled by the corresponding membrane voltage, which ranges between 0 and I volt. A

pore of radius r,j, is stable only for U less than about 0.35 v, and the force favors expansion of pores

larger than 20 rum for all values of U.

FIGURE S. Membrane voltage vs time (short time scale). for a simulated charge pulse experiment.

Each curve is labeled by the corresponding value of the injected charge Q. The curves for Q = 25
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nanocoulombs and 20 nanocoulombs show REB while the others do not. The values of the membrane

parameters are given in Table 1.

FIGURE 6. Membrane voltage vs time (long time scale) for a simulated charge pulse experiment.

Each curve is labeled by the corresponding value of the injected charge Q. The curves for Q = 25

nanocoulombs and 20 nanocoulombs arc the spikes at t = 0. The curve for Q = 15 nanocoulombs

shows that the membrane suffered REB at t = 2gs, but the membrane recovered before it had time to

discharge completely. The curve for Q = 10 nanocoulombs shows rupture, while the curve for Q = 5

nanocoulombs shows that the membrane conductance did not increase enough to discharge the mem-

brane. The values of the membrane parameters are given in Table 1.

FIGURE 7. Number of pores vs time (short time scale) for a simulated charge pulse experiment.

Each curve is labeled by the corresponding value of the injected charge Q. For Q = 25 nanocoulombs,

N increases from about 6 to about 2 x 10s. The values of the membrane paramctcrs are given in Table

1.

FIGURE 8. Number of pores vs time (long time scale) for a simulated charge pulse experiment.

Each curve is labeled by the corresponding value of the injected charge Q. For Q = 25 nanocoulombs

and 20 nanocoulombs, cases for which REB occurs, N increases to about l0 in less than .5 Rs and

then decays exponentially with a time constant of = 4.5 gs. For Q = 15 nanocoulombs, N increases

rapidly to about IO0 and remains almost constant for about 4 ps before the exponential decrease. For

N = 10 nanocoulombs. N increases to about 2 x W03 in about 5 4 and remains almost constant for

about 30 ;Ls before the decay phase. The membrane in this case ruptures. For Q = 5 nanocoulombs,

N increases to about 40 in 80 pts. N will return to its initial value as the membrane discharges with a

time constant of about 2 s. The values of the membrane parameters are given in Table 1.
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FIGURE 9. Membrane conductance vs time (short time scale) for a simulated charge pulse exper-

iment. Each curve is labeled by the corresponding value of the injected charge Q. For membranes that

undergo REB (Q = 25 nanocoulombs, 20 nanocoulombs), G increases by 8-9 orders of magnitude in

less that .3 pts. The values of the membrane parameters are given in Table 1.

FIGURE 10. Membrane conductance vs time (long time scale) for a simulated charge pulse experi-

ment. Each trace is labeled by the corresponding value of the injected charge Q. The curves for Q =

25 nanocoulombs and Q = 20 nanocoulombs, the two cases of REB, show a rapid rise in conductance,

followed by relaxation to the initial state in two stages. The first stage, during which G decays

rapidly, lasts about 1.5 pts and is due to the shrinking of the pores. The second stage, during which G

decays much more slowly and approaches its initial value, lasts about 80 pts and is due to the death of

the pores. The curve for Q = 15 nanocoulombs is similar to the higher voltage curves, except that

REB is delayed and occurs after the end of the pulse, causing the first stage to take 7 pts. The curve

for Q = 10 nanocoulombs shows membrane rupture; the conductance increases for t > 30 pzs due to

the instability of a large pore. (The discontinuities in the curve are an artifact of the algorithr used to

treat the large pores.) For Q = 5 nanocoulombs, the conductance increases to a new equilibrium value

appropriate to its non-zero membrane potential. The membrane will discharge with an RC time con-

stant of about 2 s as the membrane conductanze returns to its initial value. The values of the mem-

brane parameters are given in Table 1.

FIGURE II. n vs. r for a pore undergoing REB. The density function n is of fundamental impor-

tance in the present theory, of electroporation, even though it impossible to measure it directly. The

curves arc labeled by the time in .s since the start of the charging pulse and repr-scnt n(r. r) for Q =

20 nanocoulomhs. The population of pores of all sizes grows for the duration of the pulse (which

corresponds to the time of REB). As the membrane rapidly discharges following REB, the pore des-
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truction rate increase, causing a depletion in the population of small pores. Large pores then shrink as

the population relaxes to its initial state. The values of the membrane parameters are given in Table 1.

FIGURE 12. n vs. r for a pore that ruptures. The curves are labeled by the time in Rs since the start

of the charging pulse and represent n (r, t) for Q = 10 nanocoulombs. Note the presence of a flux of

pores (n has a negative slope) through the boundary at r = 40 nm for t > 30 lts. This flux leads to

the creation of the large unstable pores that cause rupture. The probability that a large pore had formed

was 0.63 at t = 32 gts. The values of the membrane parameters are given in Table 1.
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